Quá trình Fenton xử lý nước thải

Dùng cho phản ứng Fenton cần có xúc tác và chất oxy hóa. Chất xúc tác hoàn toàn hoàn toàn hoàn toàn hoàn toàn hoàn toàn hoàn toàn có thể là muối sắt hai hoặc sắt ba còn chất oxy hóa là hyđro peroxit. Phản ứng tạo ra gốc tự do hyđroxyl diễn ra như sau:

    Fe2+ + H2O2 > Fe3+ + OH- + OH.
Fe3+ + H2O2 -> Fe2+ + H+ + HOO.
2H2O2 > H2O + OH. + HOO.

 

fenton

Bạn Đang Xem: Quá trình Fenton xử lý nước thải

 

Phản ứng của gốc hydroxyl :Gốc hydroxyl là chất oxy hóa mạnh, chỉ sau Fluorine. Phản ứng hóa học của gốc hydroxyl trong nước có 4 dạng :

(1) Dạng cộng thêm : Gốc hydroxyl thêm vào một hợp chất chưa bão hòa, aliphatic (béo) hay aromatic (thơm) để tạo nên một loại sản phẩm có gốc tự do .

 

*OH + C6H6 -> *(OH)C6H6

    (2) Dạng loại hydro : Phản ứng tạo ra một gốc hữu cơ tự do và nước

 

*OH + CH3OH -> *CH2OH + H2O

    (3) Dạng quy đổi electron : Tạo ra những ion ở trạng thái hóa trị cao hơn (hoặc một nguyên tử, một gốc tự do nếu ion mang điện tích 1- bị oxy hóa ) :

 

*OH + [Fe(CN)6]4- -> [Fe(CN)6]3- + OH-

(4) Dạng tương tác giữa những gốc : 2 gốc hydroxyl phản ứng với nhau hay 1 gốc hydroxyl phản ứng với một gốc khác để tạo nên một sản phẩm bền vững hơn:

 

Xem Thêm : Bảng quy cách ống inox 304, 201, 430, 400 tròn trang trí – stcgroup

*OH + *OH -> H2O2

Trong việc ứng dụng phản ứng Fenton giải quyết và giải quyết và giải quyết và giải quyết và giải quyết và giải quyết và giải quyết và xử lý nước thải, những điều kiện của phản ứng được kiểm soát và kiểm soát và điều chỉnh để ưu tiên xảy ra theo 2 chính sách đầu.

Ngoài ra, phản ứng oxy hóa còn được xúc tác bởi một lượng nhỏ mangan dưới dạng muối sulfate. Các điều tra và nghiên cứu và điều tra và điều tra và điều tra và điều tra trước đây cho thấy, sự hiện hữu của mangan làm tăng hiệu suất cao phản ứng nhưng chỉ với một tỉ lệ mangan rất thấp (nếu nhiều mangan quá cũng không tốt). Mangan làm tăng tác dụng hấp phụ của bông hydroxit và vai trò của mangan đa phần biểu lộ khi pH được nâng lên khoảng chừng 7-8.

 

Bể xử lý nước thải xi mạ

Bể xử lý nước thải dệt nhuộm bằng fenton lưu lượng nhỏ

    Quá trình Fenton trong xử lý nước thải

    Thông thường qui trình oxi hóa Fenton đồng thể gồm 4 giai đoạn:
    Điều chỉnh pH phù hợp: Trong những phản ứng Fenton, độ pH ảnh hưởng tác động tới vận tốc phản ứng và nồng độ Fe2+ , từ đó ảnh hưởng lớn đến tốc độ phản ứng và hiệu suất cao phân hủy những chất hữu cơ, pH thích hợp cho quy trình là từ 2 – 4, tối ưu nhất là ở  mức 2. 8. Đã có nhiều khu khu công trình nghiên cứu nhằm giảm thiểu khó khăn khi đưa pH về mức thấp rồi sau đó lại nâng pH lên mức trung tính để tách khử Fe, H2O2 dư. Nếu ta dùng những chất xúc tác khác như quặng sắt Goethite (a-FeOOH), cát có chứa sắt, hoặc sắt trên chất mang Fe/SiO2, Fe/TiO2, Fe/than hoạt tính, Fe/Zeolit… thì quy trình này gọi là Fenton dị thể, pH thích hợp ở trường hợp này theo nghiên cứu cao hơn đồng thể, khoảng từ 5 – 9.

    Phản ứng oxi hóa: Trong quy trình phản ứng oxi hóa xảy ra sự hình thành gốc *OH hoạt tính và phản ứng oxi hóa chất hữu cơ. Cơ chế hình thành gốc *OH lúc bấy giờ chưa thống nhất, theo Fenton thì sẻ có phản ứng: Fe2+      +         H2O2         —->               Fe3+  +  *OH +    OH­–. Gốc *OH sau khi hình thành sẽ tham gia vào phản ứng ôxi hóa những hợp chất hữu cơ có trong nước cần xử lý,  chuyển chất hữu cơ từ dạng cao phân thành những chất hữu cơ có khối lượng phân tử thấp. CHC (cao phân tử) +   *HO   ——>    CHC (thấp phân tử)    +  CO2 +  H2O  +   OH-

    Trung hòa và keo tụ: Sau khi xảy ra quy trình oxi hóa cần nâng pH dung dịch lên >7 để thực thi kết tủa Fe3+ mới hình thành: Fe3+     +     3OH-      —–>      Fe(OH)3. Kết tủa Fe(OH)3 mới hình thành sẽ thực thi những chính sách keo tụ, đông tụ, hấp phụ một phần những chất hữu cơ chủ yếu là những chất hữu cơ cao phân tử

    Quá trình lắng: Các bông keo sau khi hình thành sẽ lắng xuống  khiến làm giảm COD, màu, mùi trong nước thải. Sau quy trình lắng những chất hữu cơ còn lại (nếu có) trong nước thải chủ yếu là những hợp chất hữu cơ có khối lượng phân tử thấp sẽ được xử lý bổ trợ bằng chiêu thức sinh học hoặc bằng những giải pháp khác.

    1. Các yếu tố ảnh hưởng đến phản ứng Fenton :

Xem Thêm : “Chàng trai vàng trong làng giả gái” gọi tên Hứa Khải: Hoá mỹ nhân còn xinh hơn nữ chính Thiên Vũ Kỷ

     Ảnh hưởng của nồng độ sắt : Nếu không có sắt, sẽ không có sự hình thành gốc hydroxyl. Chẳng hạn như, H2O2 được thêm vào nước thải có tính phenol (nồng độ phenol không giảm vì phản ứng phá hủy phenol cần xúc tác sắt). Khi nồng độ sắt tăng, sự loại trừ phenol tăng đến điểm mà tại đó, nếu có thêm sắt vào nữa thì hiệu suất cao cũng không tăng. Khoảng liều lượng tối ưu cho xúc tác sắt biến hóa tùy theo loại nước thải và là đặc trưng của phản ứng Fenton. Liều lượng sắt cũng có thể diễn đạt dưới dạng liều lượng H2O2. Khoảng nổi bật là 1 phần Fe trên 1-10 phần H2O2.

    Ảnh hưởng của dạng sắt : Đối với hầu hết những ứng dụng, muối Fe2+ hay Fe3+ đều có thể dùng xúc tác phản ứng. Phản ứng bắt đầu xúc tác nhanh gọn nếu H2O2 nhiều. Tuy nhiên, nếu lượng hệ chất Fenton thấp (dưới 10-25 mg/l H2O2), những nghiên cứu cho thấy sắt II được ưu thích hơn. Mặt khác, muối sắt chloride hay sulfat đều có thể được sử dụng. Cũng có năng lực tái tuần hoàn sắt sau phản ứng bằng cách tăng pH, tách riêng những bông sắt và tái axit hóa bùn sắt.

    Ảnh hưởng của nồng độ H2O2 : Các gốc hydroxyl oxy hóa chất hữu cơ mà không phân biệt. Ví dụ về một chuỗi phản ứng :

Chất nền -> A -> B -> C -> D -> CO2

Với A, B, C, D đại diện thay mặt cho những chất trung gian bị oxy hóa. Mỗi sự quy đổi trong chuỗi này có tốc độ phản ứng riêng, và đôi khi chất trung gian tạo ra lại là một chất ô nhiễm không mong đợi. Những chất này yên cầu phải đủ lượng H2O2 để đẩy phản ứng lên trên điểm đó. Điều này có thể quan sát được khi tiền xử lý một nước thải hữu cơ phức tạp để giảm tính độc. Khi liều lượng H2O2 bắt đầu tăng dần, sự khử COD có thể xảy ra với ít hoặc không có sự biến hóa độc tính cho đến khi đạt một ngưỡng mà trên ngưỡng đó, việc thêm H2O2 sẽ làm giảm nhanh gọn độc tính nước thải.

    Ảnh hưởng của nhiệt độ : Tốc độ phản ứng Fenton tăng cùng với sự gia tăng nhiệt độ, nhất là khi nhiệt độ nhỏ hơn 200C. Tuy nhiên, khi nhiệt độ lớn trên khoảng 40-500C, hiệu suất sử dụng của H2O2 giảm do sự phân hủy H2O2 tăng (tạo thành oxy và nước). Hầu hết những ứng dụng của phản ứng Fenton xảy ra ở nhiệt độ 20-400C. Khi xử lý chất thải ô nhiễm nặng, việc thêm H2O2 phải tiến hành tuần tự có trấn áp để điều chỉnh sự gia tăng nhiệt độ (nhất là khi lượng H2O2¬ lớn hơn 10-20g/l). Điều hòa nhiệt độ quan trọng còn bởi lý do an toàn.

    Ảnh hưởng của pH : pH tối ưu của phản ứng Fenton trong khoảng 3-6 (4-4,5 :tốt). Khi pH tăng cao trên 6, hiệu suất phản ứng sụt giảm do sự chuyển đổi của sắt từ ion sắt II thành dạng keo hydroxit sắt III. Dạng sắt III hydroxide xúc tác phân hủy H2O2 ¬thành oxy và nước mà không tạo nên gốc hydroxyl. Khi pH nhỏ hơn 3, hiệu suất phản ứng cũng sụt giảm nhưng đỡ hơn.
Mặt khác, pH còn liên hệ với tiến triển của phản ứng. Ví dụ như pH nước thải ban đầu là 6. Trước tiên, pH giảm do thêm xúc tác FeSO4. Sau đó, pH giảm nhiều hơn khi thêm H2O2¬, sự giảm cứ liên tục từ từ đến một mức nào đó (tùy vào nồng độ xúc tác). Người ta cho là sự giảm này do quy trình phân hủy những chất hữu cơ thành axit hữu cơ. Sự biến hóa pH tiếp tục được giám sát để bảo vệ rằng phản ứng đang tăng trưởng theo đúng tiến độ. Nếu không xảy ra sự giảm pH, điều đó có thể có nghĩa là phản ứng bị cản trở. Những dòng nước thải đậm đặc (10g/l COD) cần oxy hóa nhiều bậc và điều chỉnh lại pH sau mỗi quy trình tiến độ để ngăn ngừa pH thấp làm cản trở phản ứng.

    Ảnh hưởng của thời hạn phản ứng : Thời gian thiết yếu để triển khai xong một phản ứng Fenton phụ thuộc vào nhiều yếu tố trên, đáng chú ý nhất là liều lượng xúc tác và mức ô nhiễm của nước thải. Đối với sự oxy hóa phenol đơn giản (<250 mg/l), thời gian phản ứng điển hình là 30-60 phút. Đối với những dòng thải phức tạp hoặc đậm đặc hơn, phản ứng có thể mất vài giờ. Trong trường hợp này, thực hiện phản ứng theo từng bậc (nhiều bước), thêm cả vừa sắt và H2O2 sẽ hiệu suất cao hơn, an toàn hơn là cho tất cả hóa chất vào ngay từ đầu.
Việc xác lập điểm kết thúc phản ứng cũng khá khó khăn. Sự hiện diện của dư lượng H2O2 sẽ cản trở quy trình phân tích nước thải. Dư lượng H2O2 có thể bị khử bằng cách tăng pH đến 7-10, hoặc trung hòa với dung dịch bisulfite. Thường thì việc quan sát sự đổi khác màu cũng có thể nhìn nhận tiến trình phản ứng.

    2. Các ứng dụng phản ứng Fenton trong xử lý ô nhiễm
Hiện nay trên quốc tế đã có nhiều công trình nghiên cứu, ứng dụng H2O2 làm chất oxy hóa phối hợp với những chất xúc tác vô cơ như: CuO, ZnO, Al203, Ni2O3, MnO, FeSO4… cho xử lý nước thải. Riêng hệ phản ứng tích hợp giữa H2O2 và FeSO4 đã được vận dụng phổ biến cho xử lý nhiều loại nước thải khác nhau như: nước thải dệt nhuộm, nước thải giấy, nước thải lọc dầu, thực phẩm, những ngành công nghiệp hóa chất ô nhiễm …

 

Hệ thống xử lý nước thải dệt nhuộm

Hệ thống xử lý nước thải dệt nhuộm

Các ứng dụng khác trong lĩnh vực thiên nhiên và môi trường của H2O2 đã được thế giới vận dụng gồm có :

– Khử mùi : oxy hóa H2S, mercaptan, amine và aldehyde. H2O2 có thể đưa trực tiếp vào nước thải có mùi hoặc đưa vào tháp phun ướt để khử mùi từ dòng khí.
– Kiểm soát sự ăn mòn : phân hủy dư lượng chlorine và hợp chất lưu huỳnh (thiosulfates, sulfites và sulfides) tạo ra những axit ăn mòn khi ngưng tụ trong thiết bị và bị oxy hóa bởi không khí.
– Khử BOD, COD : oxy hóa những chất ô nhiễm gây ra BOD, COD, so với những chất khó phân hủy có thể cần xúc tác.
– Oxy hóa chất vô cơ : oxy hóa cyanide, NOx, SOx, nitrites, hydrazine, carbonyl sulfide, và những hợp chất lưu huỳnh (phần khử mùi).
– Oxy hóa chất hữu cơ : thủy phân formaldehyde, cacbon disulfide (CS2), carbohydrat, photpho hữu cơ, những hợp chất nitơ, phenol, thuốc bảo vệ thực vật…
– Oxy hóa sắt kẽm kim loại : oxy hóa sắt II, mangan, arsenic, selenium…để cải tổ khả năng hấp phụ, lọc hay kết tủa từ những quá trình xử lý nước và nước thải.
– Khử độc, cải tổ khả năng phân hủy sinh học : với xúc tác H2O2 phân hủy các chất hữu cơ phức tạp thành đơn giản hơn, ít độc hơn, dễ phân hủy sinh học hơn.
– Khử trùng.
– Giải phóng các bọt khí nhỏ phân tán, nâng cao hiệu quả khử loại các váng dầu mỡ trong mạng lưới hệ thống tuyển nổi.
– Cung cấp nguồn DO bổ sung tại chỗ cho quá trình xử lý sinh học, cải thiện hiệu quả đốt cháy và làm giảm nhiệt độ vận hành trong lò đốt…
Một số nghiên cứu của các tác giả trong nước ứng dụng hệ oxy hóa Fenton để xử lý một số chất hữu cơ ô nhiễm như các dẫn xuất của phenol, dẫn xuất của bezen… cũng đã được thực hiện

    3. Các nghiên cứu về động học phản ứng Fenton

Động học phản ứng của hệ Fenton đã được nhiều tác giả trên thế giới như David R. Grymonpré; Hui Chen, Namgoo Kang và đồng sự … nghiên cứu khá kỹ trong quá trình oxy hóa các chất hữu cơ khó phân huỷ và độc hại như thuốc trừ cỏ, thuốc trừ sâu, clophenol, thuốc nhuộm… Trong các nghiên cứu này, các phương pháp phân tích văn minh như sắc khí khí, sắc ký lỏng cao áp, sắc ký khí ghép khối phổ… đã được sử dụng để nghiên cứu thành phần các chất hữu cơ trung gian trong quá trình phân huỷ các chất hữu cơ khó phân huỷ sinh học để dự đoán cơ chế phản ứng; sau đó một số tác giả đã dùng chương trình máy tính để mô phỏng để đo lường và thống kê các thông số động học và sự biến hóa nồng độ của các chất hữu cơ theo thời gian … kết quả tính trên mô hình mô phỏng khá tương thích với số liệu thí nghiệm.

    Qua các tài liệu, thông tin tra cứu được cho thấy, vẫn chưa có nghiên cứu nào thực hiện nghiên cứu động học phản ứng Fenton cho nước rỉ rác. Điều này sẽ giúp nghiên cứu một cách hệ thống và đầy đủ về quá trình oxy hóa Fenton xử lý nước rác, đánh giá được các yếu tố ảnh hưởng giúp cho việc điều khiển và tối ưu quá trình; đồng thời nghiên cứu cơ chế chuyển hoá các chất hữu cơ từ dạng khó phân huỷ sang dạng dễ phân huỷ sinh học trong các điều kiện phản ứng khác nhau nhằm kết hợp phương pháp oxy hóa Fenton với các công nghệ xử lý khác như xử lý sinh học…

Nguồn: https://dontu.net
Danh mục: noindex

Related Posts